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The entropy is usually related to the energy density of states. This relation is approximate for the finite
systems~clusters! and an exact relation connects the entropy with the phase volume of the system. These
relations give the same results only in the thermodynamic limit. We consider the microcanonical caloric curves
determined via both the approximate and exact relations. It is proved that if the caloric curve obtained from the
exact relation has a van der Waals type loop~or S bend!, then the caloric curve obtained from the approximate
relation hasS-bend, and the reverse statement is not correct. Using properties of the system at low and high
energies we have shown that a van der Waals type loop in the caloric curve of the finite system requires a
positive value of the second derivative of the logarithm of the canonical total energy distribution function at
least at one value of the energy. The latter is the weaker necessary condition forS-bend to occur in the caloric
curve than that obtained earlier.@S1063-651X~99!09611-7#

PACS number~s!: 05.20.2y, 05.30.2d, 05.70.Ce
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Many efforts have been devoted to the study of structu
and thermodynamic properties of the finite systems such
clusters@1–10#. It was shown that the microcanonical calor
curve of the finite system can have a region where a t
perature decreases with an energy increase@11–17#. This
region is usually named a van der Waals type loop orS
bend. Calculations of the energy density of states from
first principles using a histogram Monte Carlo approa
leave little doubt about the reality of such a loop@18–22#.
The loop is usually related to the coexistence of liquidli
and solidlike states of the finite system. The sufficient c
ditions for such a loop to occur in the caloric curve ha
been obtained from various model partition functions in@23–
29#. The necessary conditions are now also known@30–32#.

The entropyS(E) of the finite system consisting ofN
particles in the volumeV with the total energyE is usually
determined by

S~E!5k ln@r~E!/r0#, ~1!

wherek is the Boltzmann constant andr(E) is the energy
density of states of the system@19,26,30–32#. Here we
choose the reference level for the density of states as a
sity of unity, sor0 is equal to one state per unit of energy

The exact relation is given by relating adiabatic invaria
phase volumeG(E) to the entropy via Boltzmann relatio
@33–35#

S~E!5k ln G~E!. ~2!

The temperature is given by the thermodynamic relation

T~E!51/@]S~E!/]E#N,V . ~3!
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The relation~1! and the temperatureTT defined by Eqs.
~1! and ~3! are approximate for finite systems and beco
exact in the thermodynamic limit whenN→`,V→`,N/V
5const@33–35#. ThereforeTT is named the thermodynami
temperature@23#. As shown below in the present study th
temperatureTK obtained from Eqs.~2! and ~3! can be de-
fined via the mean kinetic energy, thereforeTK is named the
kinetic temperature. The difference between the thermo
namic and kinetic temperatures is increased with a decre
in the number of degrees of freedom and becomes grea
the system with one degree of freedom. For example for
particle in one dimensional Morse potential well the ener
density of states is given@36,37# by

r~E!5a/A12E/«, ~4!

where a5const and« is the depth of the potential well
Using Eqs.~1!–~4! and the relation

r~E!5@]G~E!/]E#N,V ~5!

we obtain

TT~E!5
2«

k
~12E/«!,

TK~E!5
2«

k
@A12E/«2~12E/«!#.

It is easy to see that the properties ofTK andTT are different
in interval @0;«). TT monotonically decreases from 2«/k to
7550 © 1999 The American Physical Society
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0 in this interval.TK increases from 0 to«/2k in @0; 3
4 «), and

has a maximum equal to«/2k at E5 3
4 «, and decreases in

( 3
4 «;«).

Clusters with no center-of-mass motion and zero ang
momentum are usually considered in the molecular dynam
~MD! simulations. The energy density of states and the ph
volume are given for them by@26,30#

r~E!5cE
0

E

~E2U !s/221rc~U !dU,

G~E!5
2c

s E
0

E

~E2U !s/2rc~U !dU, ~6!

wherec5const,U is the potential energy,rc(U) is the con-
figurational density of states, ands53N26 is the total num-
ber of degrees of freedom.

The probability distribution function of the kinetic energ
EK(EK5E2U) is determined by

f ~EK!5c~E2U !s/221rc~U !/r~E!

5cEK
s/221rc~E2EK!/r~E!. ~7!

From Eqs.~2!, ~3!, ~6!, and~7! we have for the mean kineti
energy

^EK&~E!5E
0

E

f ~EK!EKdEK

5cE
0

E

~E2U !s/2rc~U !dU/r~E!

5cE
0

E

EK
s/2rc~E2EK!dEK /r~E!

5
s

2

G~E!

r~E!
5

s

2 S ] lnG~E!

]E D
N,V

5
s

2
kTK~E!.

It is the mean kinetic energy that must be obtained if
conditions corresponding to the hypothesis of equala priori
probabilities are provided in the MD simulations. Therefo
the kinetic temperature can be obtained from the MD sim
lations via relation

TK~E!5
2^EK&~E!

ks
.

We shall show that if the caloric curveTK(E) has a van
der Waals type loop, then the caloric curveTT(E) has also
such a loop, and the reverse statement is not correct.

Let us assume that the energy density of statesr(E) is the
function with smooth first derivative. For convenience w
shall not write indices of the derivatives.

From Eqs.~1!–~3! and ~5! we have the following rela-
tions:
r
cs
se

e

-

TT
21~E!5

] ln r~E!

]E
5

]

]E F lnS ]G~E!

]E D G5
]2G~E!

]E2

Y ]G~E!

]E
,

TK
21~E!5

] ln G~E!

]E
5

]G~E!

]E Y G~E!,

1

TK~E!

]TK~E!

]E
5

1

TK~E!
2

1

TT~E!
, ~8!

TT~E!5TK~E!Y S 12
]TK~E!

]E D . ~9!

Equation ~9! gives ]TK(E)/]E,1 for TK(E).0 and
TT(E).0.

By differentiating Eq.~9! we can obtain

]TT~E!

]E
5

]TK~E!

]E Y S 12
]TK~E!

]E D
1TK~E!

]2TK~E!

]E2 Y S 12
]TK~E!

]E D 2

. ~10!

Let us assume that the caloric curveTK(E) has a van der
Waals type loop~Fig. 1!. Then we have

E1,Ec,E2 ,

TK~E1!.TK~Ec!.TK~E2!,

]TK~E!

]E
.0 at E,E1 and E.E2 , ~11!

]TK~E!

]E
,0 at E1,E,E2 ,

]TK~E!

]E
50 at E5E1 and E5E2 ;

and

]2TK~E!

]E2
,0 at E,Ec ,

]2TK~E!

]E2
.0 at Ec,E, ~12!

]2TK~E!

]E2
50 at E5Ec .

From Eqs.~8!, ~9!, and~11! we have

TT~E1!5TK~E1! and TT~E2!5TK~E2!,

TT~E!.TK~E! at E,E1 and E.E2 ,

TT~E!,TK~E! at E1,E,E2 .
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Relations~8!–~12! give

]TT~E!

]E
,0 at E1,E,Ec ,

]TT~E!

]E
.0 at E.E2 .

We take into account that the practically interesting s
tems usually have the global minima on the potential ene
surface and their behavior at low energies can be descr
by the system of independent harmonic oscillators. The
equality (]TT(E)/]E)E50.0 is true for this system. There
fore the caloric curveTT(E) has also a van der Waals typ
loop. From the above consideration one can also conc
that the necessary conditions for a loop in the caloric cu
TT(E) can be taken as the necessary conditions for a loo
the caloric curveTK(E).

Note that the region where]TT(E)/]E,0 lies lower in
the energy axis than the region where]TK(E)/]E,0.

Following @26#, it is easy to show that the stable equili
rium corresponds to]TK(E)/]E.0, and the instability cor-
responds to]TK(E)/]E,0.

When the caloric curve for the thermodynamic tempe
ture has a van der Waals type loop, the caloric curve for

FIG. 1. ~a! Microcanonical caloric curves;~b! first, and~c! sec-
ond derivatives of the microcanonical temperature vs energy. S
lines correspond to the kinetic temperature and dashed lines to
thermodynamic temperature.
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kinetic temperature cannot have such a loop. It is enoug
consider the following example in order to prove the abo
statement.

The energy spectrum of the cluster is defined by the d
tribution of energies of the local minima of the cluster p
tential energy surface. Each of these energy minima co
sponds to an ‘‘inherent structure’’ of the cluster@8,9,23#. The
basic model of Bixon and Jortner@23# assumes a harmoni
approximation for potential wells, and the energy gap,D,
between ground state inherent structure and exited ones
siderably exceeds the energetic spread of the energies o
exited inherent structures. For the basic model the densit
states is given by

r~E!5B@Es211A~E2D !s21u~E2D !#,

whereA andB are constants,s is the number of degrees o
freedom, andu(x) is the step-function. From Eqs.~1!–~3!
and ~5! one can see that the caloric curve for the thermo
namic temperatureTT(E) has a van der Waals type loop an
the caloric curve for the kinetic temperatureTK(E) has no
such loop fors533, A560 000, D53.5, and an arbitraryB
~Fig. 2!.

The canonical energy distribution function is defined a
product of the energy density of states and the Boltzman
exponent@31#. As mentioned above the systems under co
sideration usually have the global minima on the poten
energy surface and their behavior at low energies can
described by the system of independent harmonic oscillat
The behavior of the system can be described by the sys
of free particles at high energies where the interaction ene

id
he

FIG. 2. ~a! Microcanonical thermodynamic and kinetic temper
tures vs energy for basic model of Ref.@23# with A560 000,D
53.5,s533. ~b! Derivatives of the temperatures vs energyE. Solid
lines correspond to the kinetic temperature and dashed lines to
thermodynamic temperature. Energy is measured in units ofD, and
the temperatures are measured in units ofD/k.
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between particles becomes small comparing to the total
ergy of the system. From the above consideration we c
clude that the energy density of states is described by po
laws at low and high energies, and the second derivativ
the logarithm of the canonical energy distribution functi
has a negative value at low and high energies. Therefore
logarithm of the canonical energy distribution function has
least two inflection points if the second derivative of t
logarithm of the canonical energy distribution function ha
positive value at least at one value of the energy.

In @31,32# various equivalent necessary conditions ha
been obtained for a van der Waals type loop to occur in
caloric curve for the thermodynamic temperatureTT(E).
One of these conditions requires that the logarithm of
canonical energy distribution function should have two
flection points. It was noted above that we can take the n
essary conditions forS-bend in the caloric curveTT(E) as
.

k,
n-
n-
er
of

he
t

a

e
e

e
-
c-

the necessary conditions forS-bend in the caloric curve
TK(E). Therefore, we conclude that the necessary condi
for S-bend in the caloric curvesTT(E) andTK(E) requires a
positive value of the second derivative of the logarithm
the canonical total energy distribution function at least at o
value of the energy. The latter is the weaker necessary c
dition for S-bend to occur in the caloric curve than that o
tained in@31,32#.

We have proved that the caloric curve for the thermod
namic temperature hasS-bend if the caloric curve for the
kinetic temperature hasS-bend, and the reverse statement
not correct. Using properties of the finite system at low a
high energies we have shown thatS-bend in the caloric
curve of the finite system requires a positive value of
second derivative of the logarithm of the canonical total e
ergy distribution function at least at one value of the ener
v.
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