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The entropy is usually related to the energy density of states. This relation is approximate for the finite
systems(cluster$ and an exact relation connects the entropy with the phase volume of the system. These
relations give the same results only in the thermodynamic limit. We consider the microcanonical caloric curves
determined via both the approximate and exact relations. It is proved that if the caloric curve obtained from the
exact relation has a van der Waals type lgopS bend, then the caloric curve obtained from the approximate
relation hasS-bend, and the reverse statement is not correct. Using properties of the system at low and high
energies we have shown that a van der Waals type loop in the caloric curve of the finite system requires a
positive value of the second derivative of the logarithm of the canonical total energy distribution function at
least at one value of the energy. The latter is the weaker necessary condit®héoid to occur in the caloric
curve than that obtained earli¢61063-651X99)09611-7

PACS numbd(s): 05.20-y, 05.30—d, 05.70.Ce

Many efforts have been devoted to the study of structural The relation(1) and the temperaturé; defined by Egs.
and thermodynamic properties of the finite systems such a4) and (3) are approximate for finite systems and become
clusterd1-10]. It was shown that the microcanonical caloric exact in the thermodynamic limit wheN—co,V—o,N/V
curve of the finite system can have a region where a tem=const[33—35. ThereforeT is named the thermodynamic
perature decreases with an energy incredde-17. This  temperaturd23]. As shown below in the present study the
region is usually named a van der Waals type loopSor temperaturel obtained from Eqgs(2) and (3) can be de-
bend. Calculations of the energy density of states from théined via the mean kinetic energy, therefdig is named the
first principles using a histogram Monte Carlo approachkinetic temperature. The difference between the thermody-
leave little doubt about the reality of such a logi8-22. namic and kinetic temperatures is increased with a decrease
The loop is usually related to the coexistence of liquidlikein the number of degrees of freedom and becomes great for
and solidlike states of the finite system. The sufficient conthe system with one degree of freedom. For example for the
ditions for such a loop to occur in the caloric curve haveparticle in one dimensional Morse potential well the energy

been obtained from various model partition functions28—  density of states is givef86,37 by
29]. The necessary conditions are now also kn¢@o—32.
The entropyS(E) of the finite system consisting dfl p(E)=al\1—FEle, (4)
particles in the volumé/ with the total energyE is usually
determined by where a=const ande is the depth of the potential well.
Using Egs.(1)—(4) and the relation
S(E)=KIn[p(E)/pol, (1)
wherek is the Boltzmann constant ange(E) is the energy p(E)=[9G(E)/IE]nv ®)
density of states of the systefl9,26,30-32 Here we )
choose the reference level for the density of states as a del obtain
sity of unity, sopg is equal to one state per unit of energy.
The exact relation is given by relating adiabatic invariant T(E)= 2_8(1_ Ele)
phase volumes(E) to the entropy via Boltzmann relation T k ’
[33-35
2¢e
S(E)=kInG(E). 2 TK(E):?[\/1—E/s—(1—E/s)].

The temperature is given by the thermodynamic relation _ _ _
It is easy to see that the propertiesigf and T+ are different

T(E)=110S(E)IJE]\.v - ©)] in interval[0;¢). T+ monotonically decreases froneX to
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0 in this interval Ty increases from 0 te/2k in[0;3¢), and .

dinp(E) a[ (aG(E)”_ﬁZG(E)

has a maximum equal te/2k at E=3¢, and decreases in T T JE  9E JE JE2
(3ee).
Clusters with no center-of-mass motion and zero angular JG(E)
momentum are usually considered in the molecular dynamics JE
(MD) simulations. The energy density of states and the phase
volume are given for them bj26,3Q - dINnG(E) dG(E) G(E
E
p(E)ICfO (E-U)¥* *p(U)dU, 1 JTe(E) 1 1 ®
T(E) JdE  Tk(E) T«(E)’
2c (E
_ )82 (E)
G(E)—?JO(E U)*p(U)dU, (6) H{E)= TK(E)/(l— < ) 9

Equation (9) gives dTx(E)/dE<1 for Tx(E)>0 and
T+(E)>0.
By differentiating Eq.(9) we can obtain

wherec=const,U is the potential energy.(U) is the con-
figurational density of states, aseF 3N — 6 is the total num-
ber of degrees of freedom.

The probability distribution function of the kinetic energy ITH(E)  JTw(E) ﬁTK(E)
Ex(Ex=E—U) is determined by JE . JE (

f(Ex)=c(E—U)** *p(U)/p(E) E) ( 0TK(E) (10

+TK<E>
=CE}? Yp(E—Ex)/p(E). (7

o Let us assume that the caloric curg(E) has a van der
From Egs.(2), (3), (6), and(7) we have for the mean kinetic Waals type loopFig. 1). Then we have
energy

Ei<E.<E,,
E
(EK>(E)=f f(Ex)ExdEx Tk(ED)>Tk(Ee)>Tk(E2),
0
dTk(E)
=CJE(E—U)5/2pC(U)dU/p(E) E >0 at E<E; and E>E,, (11
0
E TE) o atE,<E<E
=c JO EX’po(E—Ex)dEx/p(E) JE 1 2
ITk(E
SG(E) _s(dnG(E)} s - (E) B 5 a E=E; and E=Ey;
“2p(E) 2\ €& |, 2 " JE
and
It is the mean kinetic energy that must be obtained if the )

conditions corresponding to the hypothesis of equgliori d TK(E)<O { E<E

probabilities are provided in the MD simulations. Therefore JE2 a c

the kinetic temperature can be obtained from the MD simu-

lations via relation 2T, (E)
>,—>0 at E.<E, (12

2(E)(E) o
Tk(E)=—— 5
I*Tk(E)
5 =0 at E=E..
JE

We shall show that if the caloric curve((E) has a van
der Waals type loop, then the caloric curVe(E) has also From Egs.(8), (9), and(11) we have
such a loop, and the reverse statement is not correct. T

Let us assume that the energy density of sta{& is the THE)=Tk(E;) and T1(E»)=Tk(E,),
function with smooth first derivative. For convenience we
shall not write indices of the derivatives. T1(E)>Tk(E) at E<E; and E>E,,

From Egs.(1)—(3) and (5) we have the following rela-
tions: T+(E)<Tk(E) at E;<E<E,.
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FIG. 1. (a) Microcanonical caloric curvegb) first, and(c) sec-

ond derivatives of the microcanonical temperature vs energy. Soligtinetic temperature cannot have such a loop. It is enough to
lines correspond to the kinetic temperature and dashed lines to theynsider the following example in order to prove the above
thermodynamic temperature. statement.

The energy spectrum of the cluster is defined by the dis-
tribution of energies of the local minima of the cluster po-
tential energy surface. Each of these energy minima corre-
sponds to an “inherent structure” of the clus{&;9,23. The
basic model of Bixon and Jortn¢23] assumes a harmonic
approximation for potential wells, and the energy gBy,
between ground state inherent structure and exited ones con-
siderably exceeds the energetic spread of the energies of the
exited inherent structures. For the basic model the density of
states is given by

Relations(8)—(12) give

dT+(E)
JE

<0 at E;<E<E,,

dT+(E)
JE

>0 at E>E,.

We take into account that the practically interesting sys-
tems usually have the global minima on the potential energy
surface and their behavior at low energies can be describedhereA andB are constantss is the number of degrees of
by the system of independent harmonic oscillators. The infreedom, andd(x) is the step-function. From Eq$l)—(3)
equality @T(E)/JE)g—o>0 is true for this system. There- and(5) one can see that the caloric curve for the thermody-
fore the caloric curvél +(E) has also a van der Waals type namic temperatur@(E) has a van der Waals type loop and
loop. From the above consideration one can also concludihe caloric curve for the kinetic temperatufg (E) has no
that the necessary conditions for a loop in the caloric curveuch loop fors=33, A=60000, D=3.5, and an arbitrar
T+(E) can be taken as the necessary conditions for a loop i(Fig. 2).

p(E)=B[ES"'+A(E—D)*> 9(E-D)],

the caloric curveTg(E).

Note that the region wheréT+(E)/JE<O lies lower in

the energy axis than the region wheyg(E)/JE<O.
Following [26], it is easy to show that the stable equilib- sideration usually have the global minima on the potential

rium corresponds téT(E)/9dE>0, and the instability cor-

responds ta’Tx(E)/JE<O.
When the caloric curve for the thermodynamic tempera-The behavior of the system can be described by the system
ture has a van der Waals type loop, the caloric curve for thef free particles at high energies where the interaction energy

The canonical energy distribution function is defined as a
product of the energy density of states and the Boltzmann’s
exponenf31]. As mentioned above the systems under con-

energy surface and their behavior at low energies can be
described by the system of independent harmonic oscillators.
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between particles becomes small comparing to the total erthe necessary conditions f@&-bend in the caloric curve
ergy of the system. From the above consideration we conf(E). Therefore, we conclude that the necessary condition
clude that the energy density of states is described by powébr S-bend in the caloric curveB(E) andT(E) requires a
laws at low and high energies, and the second derivative gjositive value of the second derivative of the logarithm of
the logarithm of the canonical energy distribution functionthe canonical total energy distribution function at least at one

has a negative value at low and high energies. Therefore, th@jye of the energy. The latter is the weaker necessary con-

logarithm of the canonical energy distribution function has alyjtion for S-hend to occur in the caloric curve than that ob-
least two inflection points if the second derivative of theigineq in[31,32.

logarithm of the canonical energy distribution function has a h d that th lori for the th d
positive value at least at one value of the energy. We have proved that the caloric curve for the thermody-

In [31,37] various equivalent necessary conditions have’@MiC temperature haS-bend if the caloric curve for the
been obtained for a van der Waals type loop to occur in th&inetic temperature haS-bend, and the reverse statement is
caloric curve for the thermodynamic temperatufe(E). not correct. Using properties of the finite system at low and
One of these conditions requires that the logarithm of thdligh energies we have shown th&tbend in the caloric
canonical energy distribution function should have two in-curve of the finite system requires a positive value of the
flection points. It was noted above that we can take the necsecond derivative of the logarithm of the canonical total en-
essary conditions foB-bend in the caloric curv@(E) as  ergy distribution function at least at one value of the energy.
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